
¹³C-¹³C COUPLING IN [1.1.1]PROPELLANE

Ronald M. Jarret^{*} and Leonarda Cusumano Department of Chemistry, College of the Holy Cross, Worcester, MA 01610

Abstract: The C1-C2 coupling constant in [1.1.1]propellane is measured to be 9.9 \pm .1 Hz. The CH bond is sp^{2.1} and the C-CH₂ bond is estimated to be sp^{8.6}-sp^{4.8}. The remaining orbital at each bridgehead carbon is sp^{0.5}.

Small ring propellanes^{1,2} are an interesting class of hydrocarbons and [1.1.1]propellane (1, also known as tricyclo[1.1.1.0^{1,3}]pentane) is perhaps the most intriguing compound of the series. The nature of bonding within the molecule continues to receive much attention³⁻⁷. Theoretical treatments have been employed to calculate various features, such as orbital hybridization^{8,9}. Since its initial synthesis¹⁰ in 1982, 1 has been analyzed with various spectroscopic methods¹¹⁻¹³ and studied through chemical experimentation¹⁴⁻¹⁶ as well. We now report the measurement of the C1-C2 coupling constant and estimation of orbital hybridization throughout 1.

Recent improvements¹⁷ in the synthetic route have simplified generation of <u>1</u> in gram quantities. The two step procedure starts with a conventional dibromocarbene addition to 2-chloromethyl-3-chloro-1-propene (commercially available). The resulting tetrahalide is purified by sublimation and reacted with methyllithium to form <u>1</u>. Purification (separation from methyl bromide and diethyl ether) is achieved by preparative gas chromatography (10% OV-101 column at 30 °C).

We have prepared samples of sufficient concentration to record the only measurable ¹³C-¹³C coupling constant in unenriched 1, using the INADEQUATE NMR experiment. Spectra were recorded and analyzed with Bruker AC-200 and AC-300 NMR spectrometers. Optimum parameters include a relaxation

delay (D1) of 20 seconds, an evolution - refocus period (D2) of 0.075 seconds and a total of 3968 scans, as used in conjunction with the INADEQ2 pulse program (Ernst-type double quantum phase cycling).

The value for the ${}^{13}C_{-}{}^{13}C$ coupling constant (Table 1) in 1 (like the value for J_{CH}) is comparable to that found for cyclopropane¹⁸ but this value is less than half of that found for bicyclobutane^{19,20} (2), which also has fused cyclopropane rings, and less than half of that estimated for [1.1.1]bicyclopentane (3), which also has three methylene units bound to two common carbons. The methine C-H coupling in 2 is 23% higher than that of 3 (and of course absent in 1). The methylene C-H coupling in 1 is 14% higher than that of 3 and is only 2% greater than that of the average value found in 2. Thus the methylene group in 1 appears to be more similar to that of 2 than of 3.

Table 1. J (Hz) and Orbital Hybridization (%s)

1		2		<u>3</u>		
C1-C2	9.9 ^a	(10-17)	21.0	(22-18)	26 ^b	(22-21)
C1/C3		(69)		(17)		
С-Н	163.7	(33)	202 ^c	(40)	164 ^c	(33)
			170 ^d	(34)	144 ^e	(29)
			152 ^f	(30)		

 $^{a}\pm 0.1$ Hz, average taken from both carbon signals (acetone-d₆, -50 °C) ^busing eq 2 ^cmethine protons ^dexo protons ^emethylene protons

^fendo protons

The measured values for J_{CC} and J_{CH} were used with empirical equations (assuming validity for 1)²¹ as a nonrigorous means to estimate orbital hybridization throughout 1 (Table 1). While many factors may affect the magnitude of observed spin-spin coupling constants, Fermi contact is the major contributor in C-H coupling; a correlation²² has been demonstrated between orbital hybridization and J_{CH} (eq 1).

$$%s = 0.2J_{CH}$$
 (1)

This correlation was used to determine the %s character in the equivalent C-H bonds of 1. The %s character from C2 in each of the remaining CH₂-C bonds was determined by assuming 100%s about C2 and an equivalence between bridgehead carbons.

The magnitude of the one-bond C-C coupling constant has been shown to increase with increasing %s character and a rough correlation²² between ${}^{1}J_{CC}$ and orbital hybridization has been demonstrated (eq 2).

$$%s_{C1} = 18J_{C1-C2} / %s_{C2}$$
 (2)

Although here other electronic factors appear to be important²³ and the correlation is not as strong or reliable as that found for C-H, this simple correlation has proven useful in the hybridization study of other small fused rings²⁴. Similarily, the %s character from C1 in the CH₂-C bond of <u>1</u> was estimated from J_{CC} (eq 2). The remaining %s character about C1 (available for bridgehead-bridgehead bonding) was estimated assuming 100%s. This scheme for estimation of orbital hybridization was also applied to <u>2</u> and <u>3</u>, using additional literature values²⁵ for J_{CH} (Table 1).

The similar average methylene C-H coupling constants of about 160 Hz in 1 and 2, suggest that these C-H bonds are approximately $sp^{2.1}$ ($sp^{2.5}$ for 3). This means that the methylene carbons contribute a hybridized orbital of about $sp^{4.7}$ to the C-CH₂ bond in 1 and 2 ($sp^{3.7}$ in 3). Thus the hybridization about the secondary carbons in 1 and 2 is essentially the same (less so for 1 and 3). The difference in J_{CC} for 1 and 2 therefore reflects a difference in hybridization of the orbital about the bridgehead carbons, involved in the C-CH₂ bond: $sp^{8.6}$ for 1 and $sp^{3.7}$ for 2 ($sp^{3.5}$ for 3). The methine C-H bond in 2 is $sp^{1.5}$ ($sp^{2.0}$ for 3 and of course absent in 1). The remaining hybridized orbitals available for bonding about the bridgehead carbons is $sp^{5.0}$ for 2 and $sp^{0.5}$ for 1. The estimated orbital hybridization, based on experimentally determined bonded nuclear couplings in 1, is more consistent with the theoretical treatments⁸ which suggest significant %s character for orbitals between bridgehead carbons.

Acknowledgement: We wish to thank K.B. Wiberg and S.T. Waddell for providing information on the synthesis and nature of [1.1.1]propellane. We are grateful for financial support from the donors of the Petroleum Research Fund administered by the American Chemical Society (19391-GB4). We would like to acknowledge the National Science Foundation for supporting our FT-NMR facilities (USE-8852774) and for partial support of this work (CHE-8712543). We would like to thank the College of the Holy Cross for continued support of our research efforts.

References

- (1) Wiberg, K.B. J. Amer. Chem. Soc. 1983, 105, 1227-1233.
- (2) Stohrer, W.D.; Hoffmann, R. J. Amer. Chem. Soc. 1972, 94, 779-786.
- (3) Wiberg, K.B.; Bader, R.F.W.; Lau, C.D.H. J. Amer. Chem. Soc. 1987, 109, 985-1001.
- (4) Feller, D.; Davidson, E.R. J. Amer. Chem. Soc. 1987, 109, 4133-4139.
- (5) Messmer, R.P.; Schultz, P.A. J. Amer. Chem. Soc. 1986, 108, 7407-7408.
- (6) Lee, I.; Yang, K.; Kim, H.S. Tetrahedron 1985, 41, 5007-5010.
- (7) Jackson, J.E.; Allen, L.C. J. Amer. Chem. Soc. 1984, 106, 591-599.
- (8) Newton, M.D.; Schulman, J.M. J. Amer. Chem. Soc. 1972, 94, 773-778.
- (9) Herr, M.L. Tetrahedron 1977, 33, 1897-1903.
- (10) Wiberg, K.B.; Walker, F.H. J. Amer. Chem. Soc. 1982, 104, 5239-5240.
- (11) Wiberg, K.B.; Dailey, W.P.; Walker, F.H.; Waddell, S.T.; Crocker, L.S.; Newton, M. J. Amer. Chem. Soc. 1985, 107, 7247-7257.
- (12) Honegger, E.; Hanspeter, H.; Heilbronner, E.; Dailey, W.P.; Wiberg, K.B. J. Amer. Chem. Soc. 1985, 107, 7172-7174.
- (13) Orendt, A.M.; Facelli, J.C.; Grant, D.M.; Michl, J.; Walker, F.H.; Dailey, W.P.; Waddell, S.T. *Theor. Chim. Acta.* 1985, 68, 421-430.
- (14) Wiberg, K.B.; Waddell, S.T. Tetrahedron Lett. 1988, 29, 289-282.
- (15) Wiberg, K.B.; Waddell, S.T. Tetrahedron Lett. 1987, 28, 151-154.
- (16) Wiberg, K.B.; Waddell, S.T.; Laidig, K.E. Tetrahedron Lett. 1986, 27, 1553-1556.
- (17) Semmler, K.; Szeimies, G.; Belzner, J. J. Amer. Chem. Soc. 1985, 107, 6410-6411.
- (18) Weigert, F.J.; Roberts, J.D. J. Amer. Chem. Soc. 1967, 89, 5962-5963.
- (19) Schulman, J.M.; Newton, M.D. J. Amer. Chem. Soc. 1974, 96, 6295-6297.
- (20) Newton, M.D.; Schulman, J.M.; Manus, M.M. J. Amer. Chem. Soc. 1974, 96, 17-23.
- (21) Della, E.W.; Pigou, P.E. J. Amer. Chem. Soc. 1984, 106, 1085-1092.
- (22) Frei, K.; Bernstein, H.J. J. Chem. Phys. 1963, 38, 1216-1226.
- (23) Maciel, G.E; McIver, Jr., J.W.; Ostlund, N.S.; Pople, J.A. J. Amer. Chem. Soc. 1970, 92, 1-11.
- (24) Bertrand, R.D.; Grant, D.M.; Allred, E.L.; Hinshaw, J.C.; Strong, A.B. J. Amer. Chem. Soc. 1972, 94, 997-999.
- Wiberg, K.B.; Lampman, G.M.; Ciula, R.P; Connor, D.S.; Schertler, P.; Lavanish, J. *Tetrahedron* 1965, 21, 2749-2769.
 (Received in USA 20 October 1989)